2'-p-METHOXYCOUMAROYLALOERESIN, A C-GLUCOSIDE FROM ALOE EXCELSA

PAUL P. MEBE

Department of Chemistry, University of Zimbabwe, Harare, Zimbabwe

(Received 5 January 1987)

Key Word Index—Aloe excelsa; Liliaceae; aloesin; C-glucosides; p-methoxycoumaroylaloeresin.

Abstract—The leaves of Aloe excelsa afforded, aloesin, anthraquinones and a new compound 2'-p-methoxycoumaroylaloeresin whose structure, 2-acetonyl-7-hydroxy-8-C-β-D-[2'-O-(E)-p-methoxycoumaroyl]-methylchromone, was established by spectral and chemical means.

INTRODUCTION

The leaves of Aloe excelsa A. Berger, which is widely distributed in southern Africa, are commonly used in traditional medicine to treat venereal sores, asthma and abdominal pains [1]. Many aloe species contain anthraquinones, anthrones, chromones and their C-glycosyl derivatives [2-4]. I report here a chemical investigation of the dried leaf surfaces of Aloe excelsa which resulted in the isolation of a new natural compound, p-methoxycoumaroylaloeresin (2) and known compounds, aloesin (1) [5], homonataloin [6], aloin [4] and 1,5-dihydroxy-3-hydroxymethylanthraquinone [7] from the acetone extract.

RESULTS AND DISCUSSION

The compound 2, $C_{29}H_{30}O_{11}$, gave a dark green colour with ferric chloride and dissolved in aqueous sodium hydroxide indicating its phenolic nature. The IR spectrum showed two carbonyl bands at 1652 and 1716 cm⁻¹ and an hydroxyl group band at 3340 cm⁻¹. The UV spectrum had maxima at 226, 250 (sh) and 297 nm. Both spectra correspond closely with those of 1. The presence of the aloesin system is supported by the ¹H NMR spectrum (CD₃COCD₃), which showed three singlets at δ 2.36, 2.74 and 3.94 for the acetonyl, aromatic and methoxyl methyl groups, respectively. The D₂O exchangeable singlet at

 δ 10.00 was attributed to the unchelated phenolic hydroxyl group. The glucosyl protons appeared as multiplets at δ 3.40-3.90 and the methylene protons of the acetonyl group appeared as a singlet at δ 3.84. The singlets at δ 6.18 and 6.85 were ascribed to the olefinic proton (H-3) and the aromatic proton (H-6), respectively. The remaining ¹H NMR signals at δ 3.94 (s, OMe) and a set at 6.08 (d, J = 16 Hz, 1H) and 7.36 (d, J = 16 Hz 1H) (typical AB pattern of trans olefinic protons) and another set at 6.88 (d, J = 8.6 Hz, 2H) and 7.48 (d, J = 8.6 Hz, 4H) (typical AA'BB' pattern of a 1,4-disubstituted aromatic compound) and the ¹³C NMR data (Experimental) indicated the substitution of an (E)-p-methoxycoumaroyl unit in the aloesin parent structure. The position of the pmethoxycoumaroyl unit was deduced from the most deshielded triplet peak at δ 5.68 which was assigned to a glucosyl proton on the acylated carbon [8]. The acylation position was determined to be at C-2' by a spin decoupling experiment. Irradiation of a doublet peak at δ 5.16 (H-1'), second most deshielded, simplified only the triplet peak at δ 5.68 to a doublet. This signal was assigned to the proton H-2' of the acylated carbon.

Definitive proof of the principal structure was obtained from hydrolysis of 2 with sodium methoxide in methanol, which afforded 1, identified by co-TLC and mmp with an authentic sample, and p-methoxycoumaric acid, identified by its ¹H NMR and MS data analysis. The results of the

Short Reports 2647

hydrolysis further proved that the methoxyl group is attached to the coumaroyl unit (C-7") and not to the aloesin system (C-7). Further support for structure 2 was obtained from its mass spectrum which/shows the molecular ion peak at m/z 554, loss of the p-methoxycoumaric acid at m/z 376 and the presence of the p-methoxycoumaroyl fragment ion at m/z 161.

EXPERIMENTAL

Leaves of Aloe excelsa collected from the University of Zimbabwe campus, Harare, Zimbabwe were skinned. The skins were air-dried, powdered and extracted with Me₂CO. After removal of the solvent, the extract was subjected to CC over silica gel when 2 was obtained with MeOH-CHCl₃ (1:3). The known C-glucosides were obtained in larger quantities by CC using H₂O-MeOH-CHCl₃ (1:14:10) as eluent. The red pigment; 1,5-dihydroxy-3-hydroxymethylanthraquinone [7] was obtained from prep. TLC with MeOH-CHCl₃ (1:9) from the CHCl₃ extract of the Me₂CO residue. All isolated known compounds were identified by direct comparison (mmp, TLC, and ¹H NMR) with authentic samples.

2'-p-Methoxycoumaroylaloeresin (2), 2 was recryst. from EtOAc as light yellow crystals, mp 138–140°, soluble in Na₂CO₃ and NaOH soln. UV λ_{\max}^{EtOH} nm (log): 226 (4.41), 251 sh (3.90), 298 (4.14); IR ν_{\max}^{KBr} cm⁻¹: 3340, 1716, 1652, 1602, 1515, 1460, 1380, 1166, 916, 835, 759. ¹H NMR (Me₂CO- d_6): δ 2.35 (s, 3H, aromatic methyl), 2.74 (s, 3H, acetonyl methyl), 3.45–4.00 (m, 8H, glucosyl protons), 3.86 (s, 2H acetonyl methylene), 3.94 (s, 3H, aromatic methoxyl), 5.16 (d, 1H, H-1'), 5.69 (t, 1H, H-2'), 6.08 (d, 1H, H-2''), 6.18 (s, 1H, H-3), 6.85 (s, 1H, H-6), 6.88 (d, 2H, H-6 and H-8''), 7.35 (d, 1H, H-3''), 7.48 (d, 2H, H-5'') and H-9''), 9.90 [s br, 1H, phenolic

proton]. 13 C NMR (DMSO- d_6): $\delta22.7$ (C-12), 29.7 (C-11), 48.3 (C-9), 55.9 (C-13), 61.5 (C-6'), 70.4 (C-1'), 70.6 (C-4'), 72.1 (C-2'), 77.8 (C-3') 81.8 (C-5'), 110.8 (C-8), 112.8) (C-3), 114.6 (C-2"), 115.6 (C-6", 8"), 115.7 (C-4a), 116.8 (C-6), 125.0 (C-4"), 130.1 (C-5", 9") 141.8 (C-5), 144.6 (C-3"), 157.4 (C-1a), 159.7 (C-7), 160.6 (C-2), 161.3 (C-7"), 165.4 (C-1"), 178.6 (C-4), 202.1 (C-10). MS m/z (rel. int.); 554 ([M] $^+$, 15), 408 (2), 376 ([M $- C_{10}H_{10}O_3]$, 2), 341 (7), 275 (100), 259 (14), 256 (47), 233 (61), 193 (15), 178 (4), 161 (8).

Alkaline hydrolysis. 2 was dissolved in 1% KOH in MeOH and soln was refluxed for 2 hr. After evap. of MeOH, the residue was diluted with $\rm H_2O$ and acidified with dil HCl. The soln was first extracted with $\rm Et_2O$ and then n-BuOH. The $\rm Et_2O$ extract, after chromatography, showed a molecular ion m/z 178 in the MS and the same ¹H NMR spectrum as (E)-p-methoxycoumaric acid, while the n-BuOH extract showed the same UV spectrum and chromatographic behaviour as 1.

REFERENCES

- Drummond, R. B., Gelfand, M. and Mavi, S. (1975) Excelsa, Aloe Cactus Succulent Soc. 15, 51.
- Watt, J. M. and Breyer-Brandwijk, M. G. (1982) The Medicinal and Poisonous Plants of Southern and Eastern Africa, p. 683. E. & S. Livingstone, Edinburgh.
- 3. McCarthy, T. J. (1969) Planta Med. 17, 1.
- 4. Hay, J. E. and Haynes, L. J. (1956) J. Chem. Soc. 3141.
- Haynes, L. J., Henderson, J. I. and Tyler, Jean M. (1960) J. Chem. Soc. 4879.
- 6. Haynes, L. J. and Holsworth, D. K. (1970) J. Chem. Soc. 2581.
- Imre, S. Sar, S. and Thomson, R. H. (1976) Phytochemistry 15, 317.
- Gramatica, P., Monti, D., Speranza, G. and Manitto, P. (1982) Tetrahedron Letters 2423.